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Abstract

 

The study of the shock structure in a viscous heat conducting fluid is an old 
problem [Murduchow and Libby, J. Aero. Sc., Vol. 16, 1949, 674-704]. We 
study this problem from a novel mathematical point of view. A new class of 
generalized functions is defined where multiplication of any two functions is 
allowed with the usual properties. A Heaviside function in this class has the 
unit jump at  occurring on an infinitesimal interval  of the nonstand-

ard analysis (NSA) in the halo of . This jump has a smooth microstruc-

ture over the infinitesimal interval . From this point of view, we have a new 
class of Heaviside functions, and their derivatives the Dirac delta functions, 
which are equivalent when viewed as continuous linear functionals over the 
test function space of Schwartz. However, they differ in their microstructures 
which in applications are determined from physics of the problem as shown 
in our presentation. We start by assuming that the jumps in fluid dynamic 
parameters pressure , specific volume , velocity , etc., occur over the 

same infinitesimal interval . We emphasize that what we call a jump here 
has a smooth transition within an infinitesimal interval that to an observer on 
the real line looks like a classical jump  obtained from the shock macro-
structure. For each fluid dynamic parameter, say the pressure , we write 

, where  is the pressure on the upstream side of the 
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shock,  is the jump across the shock and  is the Heaviside function 
associated with the transition of the pressure within the shock which is identi-
cally zero on the side of the shock where the pressure is . The Heaviside 

functions associated with the jumps of the fluid dynamic parameters across 
the shock are assumed to have different microstructures. We are interested in 
determining the shock speed, the values of these jumps, and the microstruc-
tures of these Heaviside functions which collectively we call the shock struc-
ture. We study the shock structure for a fluid with constant viscosity and heat 
conductivity and Prandtl number . Let  be the 
Heaviside functions associated with the jumps in entropy, specific volume, 
velocity, pressure and temperature, respectively, having possibly different 
microstructures. From conservation of mass equation, we show that , 
i.e., they have the same microstructure. The shock speed is also obtained 
from this conservation law. From the momentum equation, we find one first 
order O.D.E relating  and . Using this result in the energy equation, we 

get a second order nonlinear O.D.E. in  which can be solved numerically 
utilizing Mathematica 4. The jumps in parameters across the shock are also 
obtained in this process which are the same as those obtained by the classical 
method. From the knowledge of , the Heaviside function  is obtained. 
The other Heaviside functions are obtained from thermodynamic relations. 
The results show that the microstructures of  are all different 
from each other. One of the most interesting results obtained is that while 

 are monotonically increasing from zero to one within a shock, the 

Heaviside functions  associated with the entropy jump has a positive peak 

of greater than one within the shock. The Heaviside function  associated 
with temperature jump is monotonically increasing at low Mach numbers but 
develops a peak greater than one within the shock at high Mach numbers. 
These results have been obtained by other means before but it is satisfying to 
obtain them using NSA. We present numerical results of our work showing 
the dependence of the microstructure of the Heaviside functions on the 
upstream Mach number. The new generalized functions give us one more 
tool to study physical phenomena where two or more vastly different length 
or time scales are associated with the problem. The laws of physics will allow 
us to select the correct generalized function from the class of generalized 
functions with different microstructures that are equivalent when viewed as 
continuous linear functionals over the test function space of Schwartz. 
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Introduction

The study of shock structure is an old problem. We 
will study it using nonstandard analysis (NSA) 
assuming that the shock thickness is of an arbitrary 
infinitesimal length  of NSA. We will then introduce 
a macroscopically equivalent class of Heaviside 
functions (HF’s) which differ in their microstructure 
over . 
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Initial Step of the Analysis

We consider a normal shock in a fluid with 
constant viscosity, heat conductivity and 
Prandtl number 3/4. Introduce five HF’s E, H, K, 
L, and N which may differ in their 

microstructure. Let  denote the jump of a 
flow parameter across the shock. In 
streamwise direction x, we write 

 

   

∆

S x( ) S1 ∆SE x( )   Entropy ,  v x( )+ v1 ∆vH x( )   Specific volume+= =

u x( ) u1 ∆uK x( )  Velocity ,   p x( )+ p1 ∆pL x( )    Pressure+= =

T x( ) T1 ∆TN x( )    Temperature+=
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Assumptions and Properties

Assumptions:
1. The microstructures of the HF of flow parameters are defined 

over the same infinitesimal interval  

2. The variation of flow parameters over  is 

Properties:
1. All the HF’s are macroscopically identical to the usual HF

2. The derivatives of all orders of each HF are clearly defined over 
hyperreals

3. The product of a HF and a delta function is clearly defined over 
hyperreals. The product of two delta functions is also defined.

4. The new class of delta functions as derivatives of the new class 
of HF’s behave as the well-known Dirac delta function on the 
space of test functions of schwartz distributions

5. Each HF in new class of HF’s is discontinuous over hyperreals

ε
ε c∞
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The Structure of the Shock in a 
Viscous Heat Conducting Fluid

The Governing Equations 

  Mass Continuity

 Momentum

Energy

Assumptions: constant viscosity coefficient, nonheat 
conducting gas for the following analysis (constant 
viscosity coefficient and heat conductivity, Prandtl 
number = 3/4 for the figures)

vt uvx vux–+ 0=

ut uux v px βvuxx–+ + 0,   β 4µ
3

------= =

α pv( )t αu pv( )x pvux βvu
2
x–+ + 0,  α 1

γ 1–
-----------= =
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Mathematical Analysis

Let  shock speed. All HF’s are 
functions of . Mass Continuity eq. gives:

  

, we get 

ξ u ct , c–=
ξ

dH
∆u v1 ∆vH+( )
------------------------------------ dK

∆v u1 c– ∆uK+( )
--------------------------------------------= equation involving

infinitesimal quantities

u1 c–

∆u
-------------- K+ A

v1
∆v
------ H+ 

  ,  A const.= =

H  and K 0 as   ξ ∞–→→ A
u1 c–

v1
-------------- ∆v

∆u
-------=
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Mathematical Analysis (cont’d)

 gives  shock 

speed and .These are HF’s associated 
with specific volume and velocity.

The momentum eq. can be integrated to give

 

This is a functional relation between  and  
(associated with pressure).

H  and K 1 as   ξ ∞→→ c u1
∆u
∆v
-------v1–=

H K=

H ξ( ) 3∆p
4µ∆u
--------------       

3∆p
4µ∆u
-------------- ξ′ ξ–( ) L ξ′( )exp ξd

0

ξ

∫=

H L
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Mathematical Analysis 
(contin’d))

The energy eq. is: 

Using the functional relation between  and , 
we get a nonlinear 2nd order ODE for  that 
can be integrated to give:

 

If we reverse the role of  and , this equation 
is separable as follows.

αβv∆uL ′ 1 α+( ) p∆v L H–( ) ∆p∆v L H–( )2–+ 0=

H L
H

β∆u
p1

---------- 1
∆v
v1
------H+ 

  H′ ∆p
p1
-------

γ∆v
v1

---------+ 
  H

γ 1+
2

------------∆p
p1
-------∆v

v1
------H

2
+ + 0=

H ξ
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Mathematical Analysis (cont’d)

This equation is integrated using Mathematica 
4. The functional relation between  and  
can be integrated analytically using the 
energy relation to give:

  

1
∆v
v1
------y+ 

 

γ 1+
2

------------∆p∆v
p1v1
--------------y

2 ∆p
p1
-------

γ∆v
v1

---------+ 
  y+

------------------------------------------------------------------------ yd
0

H
∫

p1
β∆u
----------ξ–=

H L

L p1∆v γ γ 1–
2

-----------
∆p
p1
-------H+ 

  v1∆p 1
∆v
v1
------H+ 

 ⁄–=
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Results

To integrate the relation for  we divide the 

length scale by the infinitesimal  so that we 

can visualize the results over reals. Once  is 
obtained,  is known in closed form. We have 
shown that . 

The HF’s  for entropy and  for temperature 
are found from thermodynamic relations which 
depend on  and  (these are HF’s for specific 
volume and pressure). 

H

ε
H
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K H=
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Mathematica Calculations

Constant viscosity and heat conductivity, 
Prandtl number = 3/4
Definitions of HF’s: H specific volume (= K velocity), 
L Pressure, E entropy, N temperature
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Concluding Remarks

– We have defined a class of HF’s which differ in their 
microstructure on an infinitesimal interval in the 
halo of zero

– The derivatives of all orders of these HF’s are defined 
and have a value in hyperreals over the infinitesimal 
region

– The product of each HF with another HF or the 
derivatives of a HF is defined unambiguously

– These functions all behave like Schwartz 
distributions on the test function spaces of 
Schwartz, i.e., they retain their macroscopic 
properties 

– We have given an example of the application of these 
new class of HF’s and their derivatives to shock 
structure problem obtaining well-known results    


